Development of Lithium Sulfur Battery by Incorporation of Reduced Graphene Oxide and Mesoporous Carbon Nanofiber Enabled by Air Controlled Electrospray Method
tarafından
 
Halim, Willy Sandi, author.

Başlık
Development of Lithium Sulfur Battery by Incorporation of Reduced Graphene Oxide and Mesoporous Carbon Nanofiber Enabled by Air Controlled Electrospray Method

Yazar
Halim, Willy Sandi, author.

ISBN
9780438046160

Yazar Ek Girişi
Halim, Willy Sandi, author.

Fiziksel Tanımlama
1 electronic resource (123 pages)

Genel Not
Source: Masters Abstracts International, Volume: 57-06M(E).
 
Advisors: Yong L. Joo Committee members: Lynden A. Archer; Jin Suntivich.

Özet
The popularity of lithium-sulfur technology and graphene oxide have been surging following the rapid development of technology. High capacity and low cost of sulfur in conjunction with the high surface area and intriguing chemical and mechanical properties of graphene oxide (GO) are subject to many scientific interests. For my project, GO was primary interest to improve the electrochemical performance of lithium sulfur battery as a polysulfide inhibitor and active materials anchor. In chapter 1, GO was utilized as an interlayer to capture polysulfide. GO was coated onto mesoporous carbon nanofiber using air controlled electrospray method. We analyzed the performance of Li-S battery at different reduction temperatures under N2 gas flow and found optimum performance at 300 °C. In chapter 2, GO was directly coated onto celgard separator along with the conductive polymer as an effective suppressor of polysulfide diffusion. In chapter 3, GO serves as a binder and polysulfide anchor to adhere active materials onto an aluminum substrate. The fabrication was carried by air controlled electrospray process. Air controlled electrospray process showed superior performance as opposed to conventional slurry method due to unique porous mechanical structure morphology and elimination of insulating polymer binder. Our conclusion indicated that air controlled electrospray process provides novel, facile, and scalable process to develop advance lithium-sulfur cells.

Notlar
School code: 0058

Konu Başlığı
Chemical engineering.
 
Engineering.

Tüzel Kişi Ek Girişi
Cornell University. Chemical Engineering.

Elektronik Erişim
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:10787353


Yer NumarasıDemirbaş NumarasıShelf LocationShelf LocationHolding Information
XX(689810.1)689810-1001Proquest E-Tez KoleksiyonuProquest E-Tez Koleksiyonu