
Eylem Seç

Adaptive Sampling Fixed-step and Line Search Methods for Stochastic Optimization
Başlık:
Adaptive Sampling Fixed-step and Line Search Methods for Stochastic Optimization
Yazar:
Tan, Hui, author.
ISBN:
9780438012103
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 electronic resource (73 pages)
Genel Not:
Source: Masters Abstracts International, Volume: 57-06M(E).
Advisors: Raghu Pasupathy; Hong Wan Committee members: Gesualdo Scutari.
Özet:
For the unconstrained optimization problem [Special characters omitted] f(x) (P) where the function f or its gradient ∇ f are not directly accessible except through Monte Carlo estimates, we present three solution algorithms: fixed-step for infinite population sampling, fixed-step for finite population sampling, and line search for infinite population sampling. The salient feature of each of these algorithms is that the Monte Carlo sampling is adaptive to the algorithm trajectory, sampling little when the algorithm iterates are assessed to be far away from a first-order critical point and sampling more when the algorithm iterates are assessed to be close to a first-order critical point. We show that a specific form of such adaptive sampling that balances the squared bias and variance of gradient estimates achieves global convergence to a first-order critical point in addition to enjoying the fastest achievable convergence under Monte Carlo sampling. Our numerical experience on popular example problems shows promise.
Notlar:
School code: 0183
Konu Başlığı:
Tüzel Kişi Ek Girişi:
Mevcut:*
Yer Numarası | Demirbaş Numarası | Shelf Location | Lokasyon / Statüsü / İade Tarihi |
|---|---|---|---|
| XX(690888.1) | 690888-1001 | Proquest E-Tez Koleksiyonu | Arıyor... |
On Order
Liste seç
Bunu varsayılan liste yap.
Öğeler başarıyla eklendi
Öğeler eklenirken hata oldu. Lütfen tekrar deneyiniz.
:
Select An Item
Data usage warning: You will receive one text message for each title you selected.
Standard text messaging rates apply.


